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Abstract

The brain represents only a small portion of the body mass and yet consumes almost a quarter of 

the available energy, and has a limited ability to store energy. The brain is therefore highly 

dependent on oxygen and nutrient supply from the blood circulation, which makes it vulnerable to 

vascular pathologies. Key vascular determinants will ensure proper brain maturation and function: 

the establishment of vascular networks, the formation of the blood-brain barrier, and the regulation 

of blood flow. Recent evidence suggests that the phenomenon of neurovascular coupling, during 

which increased neural activity normally leads to increased blood flow, is not functional until few 

weeks after birth, implying that the developing brain must rely on alternative mechanisms to 

adequately couple blood supply to increasing energy demands. This review will focus on these 

alternative mechanisms, which have been partly elucidated recently via the demonstration that 

neural activity influences the maturation of cerebrovascular networks. We also propose possible 

mechanisms underlying activity-induced vascular plasticity.
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I. Control of cerebrovascular patterning by neural activity

I.a. Meeting energy demands: neurovascular interactions in the mature versus immature 
brain

In order to function properly, the brain relies heavily on the delivery of oxygen and nutrients 

from the blood stream (Attwell and Laughlin, 2001; Peters et al., 2004), requiring an 

adequate matching between metabolic demands of neural cells and blood supply. In the 

central nervous system (CNS), neural and vascular cells form a functionally integrated 

network, whereby neural activity and vascular dynamics are tightly coupled (Hamel, 2006; 

Lecrux and Hamel, 2011).

The anatomical substrate of neurovascular interactions in the brain is known as the 

‘neurovascular unit’ (NVU), a complex multicellular system where neurons, astrocytes, 

microglia, pericytes and endothelial cells communicate to control the diameter of brain 

vessels and ensure an adequate delivery of oxygen and nutrients to neural tissues through the 

blood stream (Attwell et al., 2010; Cauli and Hamel, 2010; Chen et al., 2014; Fernandez-

Klett et al., 2010; Hall et al., 2014; Hamel, 2006; Howarth, 2014; Lecrux and Hamel, 2011; 

Lo and Rosenberg, 2009; Petzold and Murthy, 2011). The NVU is also the anatomical 

substrate of the blood-brain barrier (BBB), a system which provides a tightly controlled 

environment, free of various toxins, pathogens, and with adequate chemical composition, for 

proper brain function (Andreone et al., 2015; Ben-Zvi et al., 2014; Saunders et al., 2014).

In the mature brain, the functional coupling between neural activity and cerebral blood flow 

(CBF) has been known for more than a century (Roy and Sherrington, 1890), as recently 

revisited (Sandrone et al., 2014). The increase in CBF following neural activity, also known 

as “neurovascular coupling”, has far-reaching implications in health and disease (Cauli and 

Hamel, 2010; Drake and Iadecola, 2007; Iadecola, 2004; Zlokovic, 2010), and represents the 

basis of functional brain imaging using blood oxygen level-dependent (BOLD) signals 
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(Devor et al., 2007; Devor et al., 2005; Hillman, 2014). In the immature brain, however, 

recent studies in rodents and humans have shown that the phenomenon of neurovascular 

coupling is not functional until few weeks after birth. While in adults sensory stimulation 

leads to a positive BOLD signal, reflecting a local increase in CBF, the identical stimulus in 

newborn infants or rat pups was shown to result in an inverted response with negative 

BOLD signals (Anderson et al., 2001; Born et al., 2002; Kozberg et al., 2013; Muramoto et 

al., 2002; Yamada et al., 2000). In these studies, negative BOLD signals were suggested to 

result from either decreased perfusion or increased oxygen consumption in response to 

sensory stimulation. The absence of a neurovascular coupling response to neuronal 

activation implies that, during early postnatal development, the immature brain must rely on 

alternative mechanisms to adequately match oxygen and nutrients supply with increasing 

energy demands. One potential mechanism during postnatal development could be the 

control of cerebrovascular patterning by neural activity.

I.b. Activity-induced vascular plasticity during postnatal development

Both the nervous and vascular systems comprise highly branched and complex networks, 

and their patterning is initiated during development in a highly stereotyped fashion that is 

controlled by genetic programs, as reviewed elsewhere (Adams and Eichmann, 2010; 

Andreone et al., 2015; Carmeliet and Tessier-Lavigne, 2005; Tam and Watts, 2010). 

However, both networks exhibit a certain degree of plasticity and undergo dynamic 

remodeling after birth (Norman and O’Kusky, 1986). As early as embryonic day 10.5 

(E10.5), the neural environment plays a critical role in the initial ingression and pruning/

stabilization of blood vessels (Daneman et al., 2009; Haigh et al., 2003; Hogan et al., 2004). 

Along development, multiple cell types including neuroblasts, neuroepithelial radial glia, 

pericytes, microglia and astrocytes associate with blood vessels and influence their density/

branching patterns (Arnold and Betsholtz, 2013; Lee and McCarty, 2014; Ma et al., 2012; 

Ma et al., 2013). For instance, reducing the proliferation of radial glial or astroglial 

progenitors during embryonic development led to a severe reduction in vascular density and 

branching frequency in the CNS at peri-and post-natal stages (Ma et al., 2012; Ma et al., 

2013).

Whether electrical activity of neural cells influences the postnatal maturation of 

cerebrovascular networks remained elusive and controversial until recently. Almost thirty 

years ago, William T. Greenough and colleagues postulated that, during postnatal 

development, the brain adapts to increased metabolic demands by creating new vessels 

(Black et al., 1990; Black et al., 1987; Black et al., 1991). These milestone studies 

introduced the concept of vascular remodeling during maturation of the brain, however they 

did not establish a direct link between neural activity and vascular patterning after birth.

From studies in the rat cerebral cortex, the unique prevailing view was that requirements 

from expanding neural tissues influence the maturation of underlying capillary networks 

(Black et al., 1987; Sirevaag et al., 1988), and that high metabolic activity correlates with 

higher vascular density (Riddle et al., 1993). Moreover, several studies proposed the 

existence of anatomical relationships between neuronal and vascular modules within cortical 

columns in the rat somatosensory cortex (Cox et al., 1993; Patel, 1983). Such anatomical 
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parallelism suggests that neuronal and vascular modules may instruct each other to build a 

precise wired network for optimized local interactions, similar to the neurovascular 

congruency observed in the peripheral nervous system (Mukouyama et al., 2002). However, 

it was later demonstrated in the same species that cortical microvascular domains do not 

display any direct topological relationship with underlying columns (Woolsey et al., 1996). 

In line with this observation, recent studies using novel imaging and computational 

techniques, with three-dimensional (3-D) reconstructions of cerebrovascular networks, 

further demonstrated that the microvascular topology does not match the neuroarchitecture 

in the mouse cerebral cortex (Blinder et al., 2013; Lacoste et al., 2014; Tsai et al., 2009). 

Thus, in light of the fact that cortical columns are shaped after birth by neural activity 

(Erzurumlu and Kind, 2001; Li et al., 2013a; Narboux-Neme et al., 2012), it is possible that 

vascular network structure can also be influenced by neural activity.

The concept of neural activity-induced cerebrovascular plasticity during postnatal 

development was first introduced by earlier studies which postulated that sensory 

stimulation had a positive effect on brain angiogenesis (Argandona and Lafuente, 1996; 

Argandona and Lafuente, 2000; Black et al., 1987; Sirevaag et al., 1988). Therefore, after 

birth, sensory-related neural activity may refine cerebrovascular networks into their mature 

form, as it does for neuronal circuits (Katz and Shatz, 1996; Zhang and Poo, 2001). With the 

ability to simultaneously visualize and analyze neuronal and vascular modules, the direct 

effect of sensory neural activity on postnatal cerebrovascular development in the healthy 

brain was recently demonstrated in a study from our laboratory (Lacoste et al., 2014). We 

found that vascular density and branching, as well as endothelial cell proliferation, were 

decreased in layer IV of the primary somatosensory cortex when sensory input was reduced 

either by a complete deafferentation, by a genetic impairment of neurotransmitter release at 

thalamocortical synapses or by a selective reduction of sensory-related neural activity. In 

contrast, enhancement of sensory inputs led to an increase in vascular density and branching. 

Therefore, sensory-related neural activity appears necessary for vascular patterning, and 

changes in neural activity are sufficient to trigger changes in vascular structure. This implies 

that the postnatal maturation of brain vascular networks not only relies on angiogenic 

programs, but is also influenced by environmental stimuli.

Under pathological conditions in which neural activity is affected, the brain vascular 

structure may be regulated differently, particularly when these conditions occur during 

critical developmental periods. Excessive neural activity following hyperactivation of 

sensorimotor systems was recently shown to impair cerebrovascular network formation 

during a critical postnatal time (Whiteus et al., 2014). Whiteus et al. found a severe 

reduction of angiogenesis in the cerebral cortex following either intense locomotor exercise, 

persistent auditory stimulation, or following chemically-induced seizures in mice. This led 

the authors to propose that excessive neural activation during early childhood may trigger 

long-term deficits in microvascular networks with important consequences for brain 

function. In the adult rat brain however, previous studies with such hyperactivation 

paradigms evidenced increased angiogenesis in the cerebellum following vigorous 

locomotor exercise (Isaacs et al., 1992) or in the hippocampus after electroconvulsive 

seizures (Newton et al., 2006), thus emphasizing the difference between the “immature” and 

the “mature” brain in terms of vascular plasticity. Importantly, this angiogenic capability of 
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the adult brain might be of interest in ischemic conditions such as stroke. Indeed, it has been 

demonstrated that angiogenesis is increased in the penumbra of the ischemic adult mouse 

barrel cortex following enhancement of sensory-related neural activity by whisker 

stimulation (Whitaker et al., 2007), an effect which involves vascular endothelial growth 

factor (VEGF)/VEGFR2 signaling (Li et al., 2011) and which can be amplified by inhibition 

of de novo cholesterol synthesis by statins (Zhang et al., 2012).

II. Possible mechanisms underlying activity-induced cerebrovascular 

plasticity

II.a. What cell types could be involved?

The question remains whether neural activity affects angiogenesis directly via 

neurotransmitter and/or growth factor release by incoming axons, or indirectly via local 

pathways activated following neural activation that involve various cellular components of 

the NVU (Table 1).

Neurons—In the coupling between neural activity and vascular function in the cerebral 

cortex, the main neuronal players are neurons projecting from subcortical regions (e.g. basal 

forebrain, locus coeruleus) to the cortex (Cauli et al., 2004; Hamel, 2006), as well as local 

neurons (Cauli and Hamel, 2010; Lecrux et al., 2011). The cerebral cortex is densely 

innervated by projection neurons that release neurotransmitters such as acetylcholine (ACh, 

basal forebrain), noradrenaline (NA, locus coeruleus), serotonin (5-HT, raphe nuclei), or 

glutamate (Glu, thalamus). We recently demonstrated that proliferation of endothelial cells 

was decreased in layer IV of the barrel cortex following reduction of somatosensory inputs, 

pointing to a possible role of thalamocortical neurotransmission in the control of cortical 

angiogenesis (Lacoste et al., 2014). Local cortical pyramidal (excitatory) neurons and 

inhibitory interneurons are also recruited by somatosensory inputs (Lecrux et al., 2011), and 

in turn release vasoactive mediators which control vascular tone (Cauli and Hamel, 2010; 

Drake and Iadecola, 2007). However, the question remains whether these neural modules 

also release angiogenesis regulators upon neural activity changes. Interestingly, it has been 

shown that neuronal expression of VEGF increases in the hippocampus of rats subjected to 

environmental enrichment (Cao et al., 2004). More recently, two reports using the postnatal 

mouse retina as a model system for studying neuro-vascular crosstalk identified novel 

neuronal signaling pathways that govern CNS angiogenesis (Joyal et al., 2014; Okabe et al., 

2014). Joyal et al. demonstrated that a subset of retinal neurons (the ganglion cells) express a 

G protein-coupled receptor known as F2rl1 (or Par2) which, upon agonist stimulation, 

relocates to the nucleus via a microtubule-dependent shuttle to induce Vegfa expression, 

promoting neovascularization. Okabe et al. demonstrated that VEGFR2 is predominantly 

expressed by retinal neurons. Upon binding to neuronal VEGFR2, VEGF protein is engulfed 

in the cell while its receptor is being endocytosed, a mechanism that allows titration of 

extracellular VEGF to regulate vascularization around retinal neurons. Additionally, neurons 

communicate with other cell types of the NVU (i.e., glial cells and pericytes) and might 

therefore indirectly influence vascular plasticity, as detailed below.
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Glial cells—Astrocytes are well positioned to mediate the effects of neural activity, being 

in close contact with both cerebral synapses and vessels. They express different classes of 

glutamate receptors and project specialized extensions (‘endfeet’) around vessels. It is well 

accepted that astrocytes respond to glutamate (Glu), via metabotropic glutamatergic 

receptors, by a rise in intracellular calcium ([Ca2+]i) from internal stores (Lind et al., 2013; 

Winship et al., 2007; Zonta et al., 2003), triggering signaling cascades which lead to the 

production of glial messengers involved in the control of CBF (Howarth, 2014), including 

epoxyeicosatrienoic acids (EETs) (Alkayed et al., 1996b). In addition to their role as 

vasodilators (Alkayed et al., 1996a; Alkayed et al., 1997), EETs are pro-angiogenic lipids. 

Indeed, in vitro evidence demonstrated that EETs are as potent as VEGF in inducing 

endothelial cells proliferation and tube formation (Munzenmaier and Harder, 2000; Potente 

et al., 2003; Pozzi et al., 2005; Zhang and Harder, 2002). More recently, a recent genetic 

study demonstrated that astrocytes are essential for the normal postnatal development of 

cerebral cortex vasculature (Ma et al., 2012). In addition, astrocytes are well known to 

release pro-angiogenic VEGF in vivo (Stone et al., 1995; West et al., 2005), and they can 

also promote angiogenesis via release of sonic hedgehog (shh) in ischemic conditions in 

vitro (Li et al., 2013b). Future studies should investigate the precise mechanisms through 

which neural activity controls the release of astroglial angiogenesis modulators in vivo, and 

their effects on cerebrovascular patterning. The other glial cell type of the brain, microglia, 

could also be involved in activity-induced vascular plasticity. Microglia are considered to be 

the brain’s resident macrophages (Neumann et al., 2009). However, microglia also play 

critical roles in postnatal brain maturation during vascular development (Arnold and 

Betsholtz, 2013) and in experience-dependant neuronal plasticity during critical periods 

(Tremblay and Majewska, 2011; Tremblay et al., 2011). Microglia appear associated with 

blood vessels as early as E10.5 when vessels start to ingress into the neuroepithelium 

(Ginhoux et al., 2010) and they promote vascular branching in the embryo (Fantin et al., 

2010) as well as postnatally (Kubota et al., 2009). Recent studies suggested that microglia 

regulate vascular branching and proliferation via release of soluble mediators which either 

promote or inhibit vascular network formation (Arnold and Betsholtz, 2013; Stefater et al., 

2011). More recently, microglia have been shown to facilitate angiogenesis in vitro via 

release of tumor necrosis factor-α (TNF-α), which upregulates endothelial ephrin-A3 and 

ephrin-A4 (Li et al., 2014). Moreover, microglia are endowed with neurotransmitter 

receptors including iono-and metabo-tropic Glu receptors (Pocock and Kettenmann, 2007) 

and are reactive to neural activity (Hung et al., 2010; Wake et al., 2009). However, it 

remains to be determined whether microglial angiogenesis regulators are released upon 

neuronal activation.

Pericytes—Long considered as support cells for the endothelium, pericytes are also 

involved in the proper vascularization of the brain (ElAli et al., 2014), in the formation and 

maintenance of the blood-brain barrier (Armulik et al., 2010; Daneman et al., 2010; Mae et 

al., 2011), and in the regulation of capillary diameter in response to neural activity 

(Fernandez-Klett et al., 2010; Hall et al., 2014; Hamilton et al., 2010; Itoh and Suzuki, 

2012). Whether pericytes also play a role in activity-induced cerebrovascular structural 

plasticity needs to be clarified, but several lines of evidence advocate in favor of such 

possibility. Pericytes and endothelial cells interact via signalling pathways which are 
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instrumental for vascular network formation, as extensively reviewed elsewhere (Armulik et 

al., 2005; ElAli et al., 2014). To only give one example, angiopoietin-1 secreted by pericytes 

binds to the endothelial-specific Tie2 receptor to promote maturation and stabilization of the 

microvascular endothelium (Suri et al., 1996). Interestingly, pericytes are sensitive to 

neurotransmitters such as glutamate, noradrenalin and acetylcholine (Hall et al., 2014; 

Peppiatt et al., 2006; Puro, 2007; Wu et al., 2003), and they are responsive to electrical 

stimulation (Peppiatt et al., 2006). Moreover, like in astrocytes, neurotransmitters cause a 

rise in [Ca2+]i in pericytes (Kawamura et al., 2004; Kawamura et al., 2003). In microvessels 

of the postnatal brain, the [Ca2+]i elevation induced in pericytes by synaptic release of Glu 

was shown to result in nuclear accumulation of NFATc3, a transcription factor involved in 

vascular development and maturation (Filosa et al., 2007). Future studies could investigate 

the ability of pericytes to secrete angiogenesis regulators upon neural activity changes.

II.b. What endothelial gene(s) could be involved?

As best illustrated by the NVU, activity-dependent regulation of vascular structure is an 

integrative process recruiting broad cellular networks. Knowing that the endothelium 

represents the ultimate effector undergoing structural changes, future studies could focus on 

investigating the genes that are regulated within endothelial cells upon modulation of neural 

activity. This approach is timely, since technological advances in gene analysis allow for a 

better understanding of cerebrovascular cell transcriptome (Ozkan et al., 2012; Zhang et al., 

2014). Such approaches could be used to investigate candidate genes and identify new 

molecular players of vascular plasticity.

One endothelial-specific gene whose upregulation has already been linked to neural activity 

is named “vascular early response gene”, or Verge (Mirza et al., 2013; Regard et al., 2004). 

In developing tissues, Verge is constitutively expressed (mRNA and protein) in the 

endothelium and is associated with angiogenesis, whereas in the adult brain it is regulated as 

an immediate early gene induced by electrical or chemical seizures and by focal ischemia. In 

cultured endothelial cells, Verge is induced by growth factors and hypoxia. Since Verge 

induction is associated with remodeling of the actin cytoskeleton, the authors proposed that 

Verge might play a role in activity-dependent changes of brain vasculature (Regard et al., 

2004). It would be interesting to test whether changes in Verge expression occur in the 

cerebral cortex following neuronal activation in a physiological context, and assess the 

effects of its modulation on cerebrovascular plasticity.

Other candidate genes that might be involved in activity-induced vascular plasticity include 

genes postnatally expressed in the endothelium and known to affect vascular remodeling. 

For instance, homeobox transcription factors are promising candidates involved in the 

control of vascular remodeling (Gorski and Walsh, 2000). Expression of members of HOX 

A, HOX B, and HOX D clusters has been detected in endothelial cells and involved in the 

balance between resting and angiogenic state of the endothelium. HOX D3 is highly 

expressed in proliferating endothelial cells that are induced to form tubes in vitro (Boudreau 

et al., 1997), and constitutive expression of HOX B3 in the chick chorioallantoic membrane 

leads to increased angiogenesis (Myers et al., 2000). Receptor neuropilin-1 (Nrp1) and its 

co-receptor VEGFR2 (Kdr) have recently been associated to postnatal angiogenesis and 
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vascular remodeling after ischemic challenge (Gelfand et al., 2014). Another interesting 

candidate is Bai1 (brain-specific angiogenesis inhibitor-1), a G-protein coupled receptor 

present in vessels of the mouse brain throughout development with higher expression at the 

tips of angiogenic sprouts (Ozkan et al., 2012). Interestingly, while endothelial-specific 

expression of Bai1 has to be confirmed, Bai1 appears predominantly expressed in dense 

microvascular networks of the cerebral cortex at P14 (Ozkan et al., 2012), which is an age 

when cerebrovascular growth and remodeling are very active (Lacoste et al., 2014). Future 

studies could investigate whether candidates or new endothelial genes are regulated by 

neural activity in vivo during postnatal development.

II.c. Could hypoxia be involved?

As mentioned earlier in this review, the absence of neurovascular coupling responses is 

characteristic of the early postnatal brain. Evoked neural activity in the immature brain 

results in decreased perfusion and/or increased oxygen extraction, underlying negative 

BOLD signals (Anderson et al., 2001; Born et al., 2002; Kozberg et al., 2013; Muramoto et 

al., 2002; Yamada et al., 2000). Therefore, in the absence of blood flow regulation, it is 

possible that the developing brain recruits alternative mechanisms to meet its increasing 

metabolic needs. Indeed, after birth, the maturation of neuronal networks involves energy-

consuming processes such as neurogenesis, synaptogenesis, maturation of astrocytes, and 

changes in brain cytoarchitecture. Thus, in the young brain, neuronal network activation 

might generate a local and transient hypoxic state. Interestingly, hypoxia-induced growth 

factors represent an important driving force of vascular development during embryogenesis 

(Haigh et al., 2003; James et al., 2009; Provis et al., 1997; Raab et al., 2004; Stone et al., 

1995) but also during postnatal cerebrovascular remodeling (Rey and Semenza, 2010), 

particularly in pathological conditions such as ischemia and cancer (Silpanisong and Pearce, 

2013). Local reduction in oxygen tension leads to activation of transcription factors 

‘hypoxia-inducible factors’ (HIFs) that signal in the nucleus following heterodimerization. 

Activated HIFs regulate the expression of virtually all the key angiogenic factors, including 

VEGF, angiopoietin-2 and placental growth factor upon binding to their hypoxia response 

elements (Jiang et al., 1997; Rey and Semenza, 2010; Semenza et al., 1997). Future studies 

could investigate whether sensory stimulation, which leads to increased vascular density and 

branching in the cerebral cortex (Lacoste et al., 2014), is due to a local hypoxic state that 

triggers hypoxia-induced angiogenic factors.

III. Future questions

While the postnatal maturation of brain vascular networks begins to draw most attention, it 

remains unknown whether the emergence of neuronal function influences brain angiogenesis 

before birth. In the embryo, before maturation of sensory organs, neural activity exists and 

has been identified as a spontaneous phenomenon contributing to the refinement of CNS 

connectivity (Katz and Shatz, 1996; Meister et al., 1991; Weliky and Katz, 1999). Yet, 

whether this type of electrical activity influences cerebrovascular patterning during 

embryogenesis remains to be determined. A recent study investigating stimulus-induced 

vascular remodeling described a melanopsin-dependent fetal light response regulating the 

regression of hyaloid vessels in the developing mouse eye (Rao et al., 2013). However, the 
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contribution, if any, of stimulus-independent neural activity to cerebrovascular patterning 

before birth remains an uncharted territory, raising the need for future investigation. 

Moreover, it is also not known whether postnatal vasculogenesis might be regulated by 

neural activity in the brain. In this context, postnatal recruitment of bone marrow-derived 

endothelial progenitor cells and their incorporation to growing vessels (Ribatti et al., 2001) 

may also be investigated following modulation of neural activity. Future studies could also 

investigate the influence of neural activity on cerebrovascular patterning during adulthood. 

Knowing that environmental changes can affect the neuronal connectivity in the mature 

brain (Bavelier et al., 2010; May, 2011), they might as well affect vascular networks. In line 

with this hypothesis, studies in adult rodents have shown that whisker stimulation can 

enhance angiogenesis in the penumbra surrounding the ischemic core following middle 

cerebral artery occlusion in adult mice (Li et al., 2011; Whitaker et al., 2007), suggesting 

that sensory stimulation might be beneficial in stroke. Other questions remain unanswered, 

for instance concerning the indirect effect of CBF on brain angiogenesis. Knowing that 

mechanical forces affect angiogenesis (Hoefer et al., 2013), it is also possible that the 

regulation of CBF by neural activity remotely influences cerebrovascular patterning. As 

already assessed in vitro and in skeletal muscle (Hansen-Smith et al., 2001; Wilkins et al., 

2014), future investigations will be needed to shed light on stretch-induced angiogenesis in 

the brain.

IV. Conclusion

Evidence gathered in this review highlight the role of neural activity in promoting the 

maturation of cerebrovascular networks during postnatal development. We propose a new 

model in which, in the absence of coupling between neural activity and cerebral blood flow, 

the immature brain might recruit alternative mechanisms around microvessels in order to 

meet the increasing metabolic demands triggered by developing neural tissues (Figure 1). 

This model, which involves different cell types in the NVU, as well as their ability to 

regulate vascular growth and plasticity, opens a new area in neurovascular research.
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Highlights

• Neural activity controls cerebral blood flow in the mature brain

• Neural activity is not coupled to cerebral blood flow in the early postnatal brain

• Neural activity controls cerebrovascular patterning in the early postnatal brain

• A model is proposed to explain how metabolic needs are met early after birth
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Figure 1. A new model for the role of neural activity in postnatal cerebrovascular development
In the mature brain, a functional coupling between increased neural activity and increased 

cerebral blood flow (“neurovascular coupling”) ensures proper brain function. In the 

immature brain, however, the phenomenon of neurovascular coupling is not functional until 

few weeks after birth. Here, we propose a model in which, in the absence of coupling 

between neural activity and cerebral blood flow, the immature brain might recruit alternative 

mechanisms around microvessels in order to meet the increasing metabolic demands 

triggered by developing neural tissues
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Table 1

Contribution of different cell type in the neurovascular unit to cerebrovascular development.

Cell type Released factors Effect on vascular patterning References

Pericytes Ang1 Vessel stabilization Suri et al., 1996

Astrocytes

VEGF-A

Pro-angiogenic

Stone et al., 1995
Munzenmaier & Harder, 2000
Zhang & Harder, 2002
Potente et al., 2003
Pozzi et al., 2005
West et al., 2005
Li et al., 2013

EETs

Shh

Ang1 Vessel stabilization

Neurons
Ang1 Vessel stabilization Cao et al., 2004

Joyal et al., 2014VEGF-A Pro-angiogenic

Microglia

TNFα Pro-angiogenic
Stefater et al., 2011
Arnold & Betsholtz, 2013
Li et al., 2014

VEGF-C,D Pro-/anti-angiogenic

Wnt5a, Wnt11 Anti-angiogenic

Ang1, angiopoietin-1; EETs, epoxyeicosatrienoic acids; Shh, sonic hedgehog; VEGF, vascular endothelial growth factor; Wnt, wingless 
integration site.
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